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ABSTRACT 
 

Video coding is a powerful enabling technology for networked multimedia transmission and communication, that has 
been in constant improvement for decades. The upcoming VVC video codec, due in 2020, from the ITU|ISO/IEC 
standards committees, aims to achieve on the order of 1000:1 compression on high resolution and high dynamic range 
video, a stunning landmark. But the basic structure of codecs has remained largely unchanged over time, the gains 
obtained mainly through complexity increases. Moreover, video encoders have for decades used the same mean squared 
error, or sum of absolute differences, measure to optimize coding decisions. At the same time, the rapid rise of deep 
learning (DL) techniques poses the question: can DL fundamentally reshape how video is coded. While that question is 
highly complex, we first see a path for DL methods to make inroads into how video quality is measured. This in turn can 
also change how it is coded. In particular, we study a recently introduced video quality metric called VMAF and find 
ways to improve it further, which can lead to more powerful encoder designs that employ these measures in the coding 
decisions. 
 

1 INTRODUCTION 
 
Lossy video compression is one of the most successful communications technologies that been developed in the past few 
decades. While lossless compression of diverse data types such as text, speech, images, and video all generally max out 
at under 3:1 compression, the lossy compression of multimedia data can achieve surprisingly high levels of compression, 
while still offering reconstruction qualities suitable for a variety of applications, most notably surveillance, 
communications, and consumer entertainment. While lossy coding of all media has made significant strides in recent 
times, the most remarkable progress has been in video. For convenience, we will summarize that development history 
(fig. 1). 
 
Beginning in 1988, with the development of H.261 and then MPEG-1, the focus was on VCD (video compact disk), 
perhaps aimed at 25:1 compression. In 1994, H.262/MPEG-2 was focused on DVD, aimed at about 35:1 compression. In 
2003, H.264/MPEG-4 AVC was focused on 1080p+ applications, and aimed at 20-200:1 compression. In 2013, 
H.265/MPEG-H HEVC was focused on 4K applications, and aimed at up to 500:1 compression. Finally, H.266/MPEG 
VVC, currently in development and due for completion in 2020, is focused on 4K/8K, High Dynamic Range (HDR) 
video, as well as spherical or 360-degree video, a novel application used in virtual reality. It squarely aims for up to 
1000:1 compression, as the test data rates in the recent Call for Proposals (CfP) show [15]. For a review of these video 
coding developments, see [29-32]. In about 30 years of development, we have increased the compression efficiency of 
video coding by a stunning 50:1, so that video compressed in H.266 can earnestly aim to represent data at a rate that is 
one-tenth of one percent of the original video! So breathtaking is this achievement, that it was likely inconceivable to 
anyone when this journey began.  But just as Moore’s Law on compute density has marched on inexorably for decades, 
yet may soon be reaching its limits, so too in video compression we may be facing a similar story. While no one knows 
how much more efficiency can still be extracted from video, it is possible we are reaching some limits (remarkably, 
information theory has yet to set limits on lossy video coding efficiency).  
 
What is also remarkable that the basic structure of the video codecs – a hybrid, motion-compensated residual coding 
design, first proposed in 1974 [36], with predictors, filters, transforms, quantizers, and entropy coders, has been 
maintained the entire time, adding only sophistication and complexity to each of its component parts. Thus, the massive 
coding efficiency gains have come mainly from two key factors: increasing video resolutions, and increasing operations 
per pixel, based on increasing compute densities available. What is further interesting is that all codec designs have 
essentially be structured to optimize for a single loss function – mean squared error, MSE (or just the sum of absolute 
differences, SAD).  So much success has perhaps bred a reluctance to change the way business is done. But there is 
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(retrieved 7/6/2018), the most widely used H.265 encoder, supports SSIM, and a psyRD, though SAD is 
default. Models beyond SAD/PSNR are just beginning to make inroads into actual encoders in wide use.  
 
 

 AOM AV1 (1.0) H.265/HEVC HM 16.18 H.266/VVC BMS 1.0 (draft) 
    

Block 
Structure 

10-way split (AV1)  
Largest block size 128x128 
(superblock). 

Quadtree 
CTU size up to 64x64 

(QTBT) + Ternary Tree (TT) 
CTU size up to 256x256 

Intra 
Prediction 

56 intra directional modes 
5 non-directional modes 
Recursive filt. based intra prediction 
Chroma from Luma 
Color palette based intra prediction 
Intra block copy 

35 intra prediction modes. 
 
 

65 intra prediction modes with improved 
intra mode coding 
Cross-component linear model (CCLM) 
prediction 

Inter 
prediction 

Single and compound prediction 
(similar to P and B) (VP9) 
Extended reference frames (3 to 7) 
Dynamic spatial and temporal 
motion vector referencing 
Overlapped block motion 
compensation 
Warped motion compensation 
Advanced compound prediction 

Hierarchical weighted 
prediction (P, B frames) 
PU level motion vector 
prediction 
Motion vector difference 
1/4 pel MV accuracy 
Block motion comp. 
Translation motion 
prediction 

Hierarchical weighted prediction (P, B 
frames) 
Sub-CU based motion vector prediction 
Adaptive motion vector precision 
Affine motion prediction 
Decoder-side motion vector refinement 
 

Transform Transform blocks 4x4 up to 64x64 
DCT, ADST (VP9), Flipped ADST, 
DST-I 

Transform block size 8x8, 
16x16, 32x32 
DCT-II and DST-VII 

Transform block sizes 4x4 up to 64x64 
Adaptive multiple core transforms 
Mode dependent non-separable secondary 
transforms (4x4) 

Loop filter Constrained directional enh. filter 
Loop restoration filters 
Frame super resolution 
Film grain synthesis 

Deblocking filter, SAO Deblocking filter, SAO, Adaptive loop filter 

Entropy 
Coding 

Multi-symbol entropy coding 
Level map coefficient coding 

CABAC Modified CABAC (with Context modelling 
for transform coefficient levels) 

Table 1. Tools Comparison for AOM AV1, HEVC HM, JVET VVC BMS1 (Draft).VVC is a standard currently in development. For 
many of the listed tools, there is a deep learning variant (though currently of higher complexity). 
 

2 A PRIMER ON DEEP LEARNING METHODS 
 

Neural networks (NNs) seem promising for many applications, but need extensive training to be useful. A breakthrough 
happened in 2006, when led by Canadian researchers (with G. Hinton at the center), deep networks were introduced 
which learned all stages through supervised training – no hand-tuning needed [LeCunHinton]. And 2014 opened the 
floodgates, when a Google trained network called GoogleNet (later called Inception), inspired by a previously winning 
effort by G. Hinton and company in 2012, finally approached human-level performance in the key task of image 
recognition, with a 6.7% error rate – a landmark feat [LeCunHinton]. A 2015 network by Microsoft [ResNet], with 152 
layers, brought the error rate further down to a stunning 3.6%. And a combined Inception-ResNet model by Google in 
2015 [Incv4] brought the error rate to 3.08%, exceeding humans on the same test data – stunning the world. A vast array 
of deep learning methods have appeared in just the last five years, most still having roots that trace back to the Inception 
model. The success of the Inception-ResNet model in image classification has been so convincing, that it has the feel of a 
definitive solution. Convolution layers automatically find the most useful features directly and hierarchically from the 
data itself, while the final, fully connected layer with a softmax activation categorizes the images into discrete classes. 
Differentiability assumptions on functions and the chain rule allow backpropagation training, where nodes are 
reweighted according to whether they contributed to (in)correct outcome, and repeated forward/backward propagation 
finds weights that work well. This still works when ReLU activation is used (only one non-differentiable point), and 
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distorted and original content at hand. So a NN can be trained to modify the distorted imagery (block-by-block) in the 
direction of the original content. This was initially successfully done in the context of JPEG compression [arcnn], and 
then later in the context of intra in video [vrcnn]. In particular, this concept can be viewed in two contexts: as a post-loop 
filter [cnnf] in the decoder, and as a post-decoding restoration processing [dcad, mfqe]; see the many references cited in 
[mfqe]. One interesting observation is that while these methods provide a modest impact on image quality (about 0.5 dB 
gain), that difference is in fact visible in close-up views (where it significantly reduces artifacts such as blurring, 
ringing…). 
 
Meanwhile, at least two papers, both from April, 2018, have directly addressed the problem of building a full video 
codec from DL alone [nnfullvid, voxelcnn]. Both report performance comparable to H.264/AVC, our 2003 standard. 
Meanwhile, our coding algorithms have seriously improved (see fig. 2). Nevertheless, the fact that this can be done at all, 
with reasonable success, is stunning, and there is little doubt this nascent field will advance rapidly in the coming years.  
 
 

4 VIDEO QUALITY ANALYSIS – A RESEARCH PROGRAM 
 
While DL can fill in for many of the tools used in video compression (or even potentially the entire chain), we focus now 
on a specific aspect that seems especially promising – measuring video quality. Digital video services, encompassing 
everything from broadcast TV and streaming to video chat, is a massive worldwide industry estimated to reach $120B by 
2022 [3]. Critical to the success of this industry is providing the highest quality video afforded by receivers and channel 
capacities. But measuring that video quality, called video quality assessment (VQA), remains a fine art, best done by 
subjective testing, impossible when you have millions of streams like Netflix, YouTube. Instead, this industry has long 
used an objective metric called peak-signal-to-noise ratio (PSNR), developed more for computational ease than 
reliability.  Recently, new objective metrics such as Structural SIMiliary (SSIM) and Visual Information Fidelity (VIF) 
have been introduced, which have made some inroads. But a fundamental need remains to have an objective metric 
which is both easy to compute and has predictive power for subjective quality with very high reliability. The availability 
of such a reliable (and computable) metric would be a bonanza. Our research program: construct it by combining image-
based measures with motion-based measures, fused if needed through machine learning methods. Netflix has proposed 
just such a fused metric called VMAF (and a simple linear SVM fusion method), which is apparently the state-of-the-art 
for its application (streaming by http/tcp) today. While image-based measures are well-represented in it, we find the 
motion-based measure used inadequate, and see a path to improving it. Our intuition is that improving the motion 
representation will help. 
 
In fact, motion is key to understanding vision, and thus video (a feature film is a motion picture). Yet for over 30 years, 
full reference video quality analysis has principally relied on image quality analysis, applied per frame, then averaging 
over frames, ignoring the fundamental role of motion in video. This is clearly incomplete. “Gordon Lynn Walls, a 
comparative anatomist, observed, “If asked what aspect of vision means the most to them, a watchmaker may answer 
‘acuity,’ a night flier ‘sensitivity,’ and an artist ‘color.’ But to the animals which invented the vertebrate eye, and hold 
the patents on most of the features of the human model, the visual registration of movement was of the greatest 
importance” (Walls, 1942)” [1]. In a predator/prey world, it is a vital survival sense, but also a key to video quality. 
Video quality analysis is itself an industry on its own, with standardization efforts running for over two decades in the 
Video Quality Experts Group (VQEG) of the International Telecommunications Union (ITU, a UN-chartered 
organization based in Geneva) [21], a sister organization to the Video Coding Experts Group (VCEG) of ITU that we 
have served in for ~20 years. US govt agencies such as the National Telecomm. Information Admin. (NTIA), and the 
National Institute for Standards and Technology (NIST), both of the Dept. of Commerce. In fact, a leading VQA, called 
VQM-VFD, was developed at NTIA, and is a VQEG standard [10]. While VQA research has been going on for decades, 
the video coding industry, often working in nearby ITU facilities in Geneva, has paid little attention. But now, these 
groups are starting to pay more attention to these VQA efforts, incorporating SSIM/MS-SSIM as well as PSNR into 
post-compression assessment calculations (though not yet in the encoder decision making process as of July, 2018). The 
old workhorse, PSNR, religiously used for decades, and central in encoding decisions, may be running out of steam. 
 
“This ability to detect motion is key for animals, allowing them to detect the presence of predators,” according to Prof. 
Daniel Kerschensteiner, MD, a discoverer of the motion detection mechanism in the eye [2]. Our understanding of 
human vision begins with the 1982 book, Vision, by David Marr [13]. In it, he pursued edge representations, multiscale 
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processing (just before wavelets and multiresolution analysis [35,36]), and angle-dependent Gabor functions (modulated 
Gaussians) as basic functions for visual representation. These ideas remain valid today, even if the details differ. In fact, 
time-frequency and time-scale variations (i.e., translations, modulations, and dilations) are the only invariances of the 
Gaussian minimizers of Heisenberg’s Uncertainty Principle, a mathematical theorem with deep implications in physics 
[14]. Marr also observed its import in image processing. Thus, Gabor functions (wave packets: translated, modulated 
Gaussians) are models of elementary particles, as well as elementary packets of signals, while time-scale translates lead 
to wavelets. What signal processing can learn from physics is astonishing, not least that as in physics, Lagrange calculus 
plays a central role, in both video compression and deep learning. But Marr’s ideas also play an important role in 
formulating video quality assessment (VQA). For down-to-earth video quality applications in the field of video 
compression, we have a reference video, consisting of uncompressed video and considered pristine, and various 
compressed versions for use in applications such as streaming or broadcast, which are distorted. Every one of the 
millions of streams of video made available by the likes of Netflix, Amazon, YouTube, Hulu, Baidu, and many others 
around the world is judged on its quality prior to serving/casting. Yet for this task, the industry has mainly used image 
quality metrics, in fact, for the most part just mean-squared error (MSE), and its relative PSNR, ignoring motion. In large 
part this is due to complexity considerations. In fact, a usable VQA must meet two stringent requirements: (a) provide 
high predictive power for subjective visual quality, and (b) be computationally efficient. While both are challenging, it is 
in this last part that many VQA metrics developed over the years really fall short. Somehow, we need to improve metrics 
yet make them more computable. 
 
If successful, we envision at least three separate, increasingly larger but more demanding applications of VQA. First, 
VQA can be used in stream selection (send the best quality video), which an elementary, often offline application. 
Second, VQA can be used in video restoration at the receiver (restore for best visual quality). This could be combined 
with deep learning to train blocks of video frames on the original video, which can provide effective restoration in 
compressed and other distorted videos [18-20]. This is a powerful application, especially offline. Finally, it could be used 
at the encoder to decide how best to encode a video with a given codec (code for true visual quality). While stream 
selection (at server) and restoration (at receiver) can require real-time performance, and thus pose complexity 
constraints, it is the encoding application that is by far the most challenging; we will focus on this application. The issue 
is that all modern encoders rely on using rate-distortion optimization (RDO) [9,14] to make decisions, based on an 
interplay between distortion D, and the rate R, to optimize the Lagrangian (where ߣ is a constant called a Lagrange 
multiplier): 

ܮ (1) = ܦ	 + ∑ = ܴߣ	 ௜௜ܦ + ;	௜ܴߣ ܮߜ			 = ௜ܮߜ <= 0 = 0 => ߣ	 = −஽೔ோ೔ ,  .ݐ݊ܽݐݏ݊݋ܿ	ܽ
Thus, given any number of independent parameters to optimize (e.g., various pixel quantizers), these are jointly 
optimized when the slopes of negative distortion over rate are all equal [14]. Now, in coding a 4K video, a modern 
encoder such as H.265 must make millions of RDO decisions per second, on everything from mode selection and motion 
estimation, to quantization and filtering. Since many video applications require real-time encoding (e.g., live events), 
usually in hardware, this puts severe constraints on how RDO is actually computed. The rate R is straightforward: how 
many bits it takes to encode the data (though even this is estimated to save cycles, not computed). But what to use for the 
distortion D, comparing a coded MxN block B to the reference version, is more open. Typically, the simple mean 
squared error (MSE) or L2-norm is used to represent the block-based spatial error ܧ௞,௦௣௔௧	. In fact, this is further 
simplified to just the Sum of Absolute Differences (SAD, or L1-norm), mainly to avoid squaring!  

	௞,௦௣௔௧ܧ	 (2) = ܦܣܵ = ෌ ௥௘௙,௜,௝ெ,ே௜,௝ୀଵܤ| − |௖௢ௗ௘ௗ,௜,௝ܤ = ቚหܨ௥௘௙ − ௖௢ௗ௘ௗหቚܨ ,     .݉ݎ݋݊	1ܮ	ℎ݁ݐ
	௞,௦௣௔௧ܧ (3) = ܧܵܯ = ෌ܰܯ/1 ௥௘௙,௜,௝ெ,ே௜,௝ୀଵܤ| − ;௖௢ௗ௘ௗ,௜,௝|^2ܤ 							ܴܲܵܰ = 10 ∗ log	(255^2/ܧܵܯ)).    

For decades, coded videos have been graded by PSNR values to the point of intimate familiarity (e.g., a 38+dB PSNR 
for 8-bit video is entertainment quality), while the internals of the video codecs actually use SAD to optimize its 
decisions. Given these computational bottlenecks, one can understand the reluctance to incorporate more sophisticated 
yet untrusted VQA metrics that have been proposed for years. Enter Netflix, one of the world’s largest video encoding 
companies, accounting for 36% of all Internet traffic in the US in 2015 [8] and growing, and Amazon Web Services 
(AWS), with a million+ server-farm, aided by Graphical Processing Units (GPUs) and Field Programmable Gate Arrays 
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(FPGAs). Netflix does all its video crunching offline on AWS, and has sizable headroom for more computations. 
Suddenly, VQA is mainstream. One observation we make is that in applying a VQA at an encoder, while restrictive in 
complexity, does have the benefit of having at hand the actual motion estimation used in the encoder; more later (see 
Detailed Innovations). As mentioned, up till now all VQA metrics in wide use were really Image QAs (IQAs). A recent 
metric proposed in 2016 by Netflix finally aims to remedy this, introducing a video multi-algorithm fusion (VMAF) 
metric [4,5]; it fuses two image quality metrics, and a feature called “motion,” into a metric using a support vector 
machine (SVM) regressor. The two image quality metrics are the well-known Visual Information Fidelity (VIF) [6], and 
the Detail Loss Metric (DLM) [7]. Both VIF and DLM are based on extracting features from images in the wavelet 
transform domain for multiscale processing (Marr-inspired!). In fact, both VIF and DLM have features at several 
different scales, but in the end 4 VIF scaled features, and 1 of DLM, are used in the VMAF0.6.1 model. As these work 
well, we keep them. For now, we focus on the “motion” feature used in VMAF, which is not a metric at all, nor even 
compares a distorted video with a reference (like the other two true metrics), but is simply the sum of absolute difference 
(SAD, or L1-norm) of the frame differences in the reference video. Surprisingly, even this allows them to claim the state 
of the art [4], in terms of power to predict subjective quality by human observers. But realizing this mission is 
incomplete, Netflix has generously released its software and dataset to encourage more work [5]. We will employ this 
software throughout (and cite Netflix results). 

We observe more carefully that the “motion” feature used in VMAF [5] makes no use of the distorted video at all. 
Instead, it uses the following. If an original (uncompressed) video sequence is a set of frames {ܨ௞}, k=0,…,K, VMAF 
uses the Sum of Absolute Frame Difference (SAFD) as a motion feature (Netflix calls this Mean of Co-located Pixel 
Difference), where ||*|| is the L1-norm. We will simplify refer to this Netflix feature as “M”, for motion.  (4)		ܵܦܨܣ = ∑ ௞௄௞ୀଵܨ|| − ௞ିଵ||.  (Actually, it uses   ෌ܨ min	{||ܨ௞௄ିଵ௞ୀଵ − ,||௞ିଵܨ ௞ାଵܨ|| −     (.{||	௞ܨ
While this is informative about how much motion is in the video (and thus in part how difficult it may be to compress), it 
sheds no light on the quality of the motion in a compressed reconstructed (distorted) stream, which is the point of the 
VQA. Nevertheless, as it does carry motion information, it manages to achieve a slight gain over other competitive 
systems in predicting visual quality especially when combined with another leading approach: VQM-VFD [10,11], on a 
Netflix dataset [4], see figure 5. Here SRCC and PCC are the Spearman and Pearson Correlation Coefficients, and 
RMSE is Root MSE. The VQM-VFD itself, designed in 2011, is a complicated metric, using 8 hand-tuned spatio-
temporal features derived from blocks of video frames, over a short period of time, in this instance, 0.2s. It is a classic 
study on how things were done prior to the deep learning revolution in 2012 [12], although oddly, it also uses a simple 2-
layer neural network to provide its mapping. We aim to improve on the quality of motion representation in VMAF. 
Specifically, for original video frames {ܨ௞}, k=0,…,K, and distorted video frames {ܩ௞}, k=0,…,K, since the frame 
difference precisely corresponds to motion (all changes to pixels), we develop temporal motion based metrics using the 
difference of frame differences (key innovation/simplification). Let’s call this FastVDO feature “DM” for differential 
motion. (5)			ܧ௞,௧௘௠௣ ௞ܨ)||	= − (௞ିଵܨ − ௞ܩ) −    .௞ିଵ) ||, with the L1-norm (but can be L2,or Lp, etc)ܩ

This is zero precisely when the motion information matches between the original and distorted videos. In combination 
with purely image-based measures, this can lead to a mathematical metric. We also develop several variants of this 
concept. 

VQM-VFD, 2011. Figure 6, from the VMAF blog show that VQM-VFD [10,11], developed by the National Telecom. 
Information Admin. of US Dept. of Commerce [23], is one of the most effective measures of video quality available, a 
feat unlikely without incorporating temporal information. Indeed, it uses 8 hand-tuned features, covering both spatial 
and temporal information (which it calls SI and TI, respectively), and was designed specifically to catch channel errors 
such as frame delay (VFD=variable frame delay). Now in the age of deep learning, hand-tuned features are quickly being 
replaced by machined learned features, which are not explicitly extracted, but learned and stored in network weights and 
biases. If needed, we can pursue improving even this metric using deep learning. For now, we elaborate on the one 
significant temporal feature used in it: TI_Gain. It computes functions using spatio-temporal (ST) blocks. 
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Figure 6. Netflix performance comparison of VMAF, VQM-VFD, and other metrics, vs Differential Mean 
Opinion Score (subjective testing), from online at [5], in (a) table, (b) graphs (color dots are per seq. True 
and Predicted Scores). SRCC and PCC are the Spearman and Pearson Corr. Coefficients, respectively, while 
RMSE is root mean square error. While (a) and (b) indicate that VQM-VFD performs very well, [5] indicates 
VMAF is both better and faster. Note that Netflix streams videos by http over TCP, so packet loss is not an 
issue. VMAF was a breakthrough, in both performance and speed. (b) is from cited Netflix blog. Compare fig. 
10. 

ܫ݂ܶ    (6) = ,݅)൫ܻݏ݉ݎ ݆, (ݐ − ܻ(݅, ݆, ݐ − 1)൯; ܩܫܶ݌	 = max ቂ݈10݃݋ ቀ௙்ூ௢௥௜௚௙்ூ௣௥௢௖ቁ , 0ቃ ; functions of ST blocks. 

ܫீܶ ௔௜௡ =  	.(ܩܫܶ݌)݈݅ܽݐ%95݁ݒ݋ܾܽܶܵ
Here, fTI is the RMS of the frame difference at time t (motion) of the luminance component Y of a spatio-temporal (ST) 
block of video, where the spatial extent is set at 0.4 degrees in viewing angle, and the temporal extent is 0.2s of video (at 
30fps, this is 6 frames). pTIG compares the motion energy in the original and processed (distorted) videos, in a manner 
analogous to PSNR, but clipped at 0. Finally, T_Gain is computed as the difference between (a) the average of the 95th to 
100th percentile values, and (b) the 95th percentile value, of pTIG. Without analyzing this further, we note immediately 
that (a) it performs fairly well (better on jittery data); (b) it is complicated. Our mission to find something both more 
effective and more computable. As mentioned, we can employ deep learning on the whole problem, and then extract a 
functional model. But we return now to VMAF, and a recent update in April, 2018 from the Univ. of Texas called ST-
VMAF [16]. 
 
ST-VMAF, April, 2018. ST-VMAF [16] builds on the VMAF metric of Netflix, but recognizing its weakness in 
representing motion, specifically adds spatio-temporal features. “VMAF … does not fully exploit temporal video quality 
measurements which are relevant to temporal video distortions.” [16, Abstract]. We fully agree, and zero-in on a key 
temporal feature used in it. First, ST-VMAF is tested on a variety of datasets, and gives notable gains. While strong 
performance in terms of high correlation coefficients to subjective scores is always desirable, we have two qualifiers: (1) 
Most of the datasets have network-induced errors in the distorted videos (e.g., timing error, TE), so that this is addressing 
problems not met by HTTP/TCP streamers like Netflix (except to mobile devices). (2) It is also computationally 
complex, and difficult to implement into an encoder for actual decision processing. Compare this and equation (6) to our 
equation (5), which is computationally simpler and captures true motion error. Our results on the NFLX dataset are in 
fig. 10. 
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Figure 7. Some informative tables from [16]. (a) various available databases for work in VQA, with citations in [16], 
importantly highlighting the type of distortion imposed. [16] develops some variants of VMAF (called ST-VMAF, E-
VMAF), which show strong results on the various databases, which have transmission errors (TE), additive white noise 
(AWN), rate adaptation (RA), and RA and/or rebuffering (QoE). The NFLX database is one of the few with basically 
only coding artifacts. (b) shows the SRCC between predicted and subjectively rated scores. We note that on NFLX, 
VQM-VFD does slightly better than ST-, E-VMAF. Note updated VMAF version (0.6.1) is used. 
 

 
Figure 8. A temporal feature used in ST-VMAF [16], called T-SpEED. It works at various scales (Marr-inspired) 
requiring downsampling, does Gaussian filtering, subtracts local means, calculates local entropies, modified by local 
weights, then finally compares reference to distorted videos, and then does averaging over blocks. So it seems 
computationally complex. See fig. 9, where it appears to be ~5X more complex than VMAF. The variant E-VMAF is 
similarly complex. 
 

 

Figure 9. (a) Internet traffic fractions, circa 2015 [17]. Since then, Netflix has grown several-fold. As of May, 2018, 
Netflix has surpassed Disney as the most valuable media company, and is watched more than cable or broadcast TV. (b) 
Relative complexity of leading VQA, as measured on a modern CPU, estimated from [16], for computing on 1080p data. 
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Figure 10. FastVDO test of VMAF, with performance on a Netflix database, where half the data is set as training, half 
testing, and utilizing the Netflix VMAF software [5]. Our results differ slightly from Netflix because we retrain VMAF 
(and our metrics) on a portion of the NFLX data, and test on the remaining. Raster from upper left: (a) original VMAF 
0.6.1; (b) a FastVDO-variant FVMAF1, a linear model with enhanced motion measures (eqn. 5); (c), FVMAF2, with a 
nonlinear functional model; (d) tabulation of correlation results. Note that the True Score has spurious points above 
100, whereas the Predicted Score is restricted to 100; so in Octave, we clipped all scores to 100 (this improves FVMAF1 
also). The encouraging performance of FVMAF2 indicates some value in using nonlinear fusion of basic measures. 
Recall there are actually 7 input parameters (4 for VIF, DLM, M, DM); for simplicity, we initially use a factorized 
functional model.  

Application to HDR Video Quality Analysis 

Now that we have covered how to develop novel, and powerful, fused VQA measures, we can consider specializations to 
applications such as HDR and 360 videos. Here we only indicate candidate measures to add in the mix to construct a 
fused metric; new performance results will be reported elsewhere. HDR video is video characterized by both high 
dynamic range (typically 1K cd/m^2 or higher), significantly beyond the standard dynamic range (SDR) video of 
typically 100 cd/m^2, and wide color gamut (typically BT.2020), with a color volume significantly beyond the standard 
BT.709. This type of video provides noticeable value in high end consumer applications such as home theater, but also 
presents unique challenges in video compression. [37] catalogs a long list of proposed HDR IQAs. Here we can choose 
to include the wPSNR (or wMSE) metric among the measures to fuse, which is currently used in HDR codec video 
evaluation, as well the encoder optimization work, in the VVC codec development effort. This metric weighs errors in 
samples according to brightness, where brighter samples are weighed more (more noticeable). wPSNR is computed as 
follows: 

(8)  ,    , 

where X is the maximum pixel value for the specific bit depth. The weight, based on luma, is computed as: 

(9)  yi = 0.015*luma(xorig,i) − 1.5 − 6;       yi = yi < −3 ? −3 : (yi>6 ? 6 : yi);      wi(luma(xorig,i)) = pow(2.0, yi÷3.0). 

But we also have a more powerful candidate, based on our own development work in HDR video coding. We already 
have workable measures for SDR videos; moreover, we have a framework in which HDR is coded by first converting 
HDR to SDR by a scaling function (a function of spatial location and time). Rather than develop the mechanism here, we 
cite [15, 34] and our own SPIE paper here, “HDR Compression in the JVET Codec,” San Diego, August, 2018. In 
essence, we develop a monochrome scaling function λ = λ(x,y,t) – visualizable as a grayscale video – that captures the 
surplus information in an HDR video over SDR. Let’s call this function the Dynamic Surplus (DS). Now, in comparing 
an original and a distorted (compressed video), we can take standard Lp measures of the difference in these functions, 
what we can call the differential dynamic surplus (DDS), as the error E_HDR. For p=2, this is again MSE, but of this DS 
function. 
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(10)  RGB_HDR = λ(x,y,t)*RGB_SDR.  DS = || λ(x,y,t)||, where ||*|| is an Lp measure, p>=1, i.e., p=1, or 2.  

(11) E_HDR = DDS = || λ_orig – λ_dis ||, where ||*|| is an Lp measure, p>=1, i.e., p=1, 2.  

This would be in addition to previous SDR-based measures, including spatial and temporal measures. We note that 
among other work, [37] compiled the performance of a long list of potential HDR Image Quality Assessment metrics 
(HDR IQAs).  In their study, they found the top two performers were HDR-VDP2, and HDR-VQM, both achieving 
above 0.95 in both PCC and SPCC. HDR-VQM is a variant of the VQM we have discussed, while HDR-VDP2 is a well-
studied HDR IQA. While such high scores for HDR image analysis are encouraging, we have not found strong 
supporting evidence that these measures are as effective in video quality analysis -- to date, no objective metrics for 
HDR video have been widely accepted as being highly predictive of human visual scores. However, the use of such 
measures in the mix, along with our differential motion DM, and differential dynamic surplus (DDS), in a potentially 
deep-learning fused metric, may prove powerful in capturing the quality of HDR video. Advances in this area will be 
reported elsewhere. 

Application to 360 Video Quality Analysis 

Similarly, 360 video is video that ideally lives on a 2D-sphere. In reality, sensors and displays are rectangular, so 
projection formats play a central role, and a commonly used projection is the equi-rectangular projection, ERP. For 360 
video, we can choose to include the WS-PSNR (or WMSE) for 360 video [15] among the measures to fuse, which is 
currently used in the assessment of 360 video in the VVC codec development effort. In brief, the WS-PSNR differs from 
the ordinary PSNR in that it accounts for the sampling difference between a flat (rectangular) representation and a true 
spherical one. Since in the ERP domain, the sampling density diverges towards the poles, it is suitably weighted by a 
cosine, given by: 

             (12)    ,          

                   . 

 

5 COsNCLUSIONS 
 
We have reviewed some applications of deep learning in video coding development, focusing on video quality 
assessment (VQA). In turn, VQA can be directly used in coding decisions, provided that the computational complexity 
of the VQA permits its insertion into the millions of decisions an encoder must make. In this regard, we reviewed some 
state of the art VQAs, including the VMAF measure. We then proposed enhancements, related to motion representation, 
which are modest in computational burden, but add value. We also proposed a simple nonlinear model, fast computable 
with a lookup table, which further improves the performance. This preliminary result looks encouraging, and will be 
investigated with more extensive datasets in future publications. We also suggest modifications for use in measuring 
video quality in the context of HDR and 360 videos.  
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