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ABSTRACT

Video coding is a powerful enabling technology for networked multimedia transmission and communication, that has
been in constant improvement for decades. The upcoming VVC video codec, due in 2020, from the ITU[ISO/IEC
standards committees, aims to achieve on the order of 1000:1 compression on high resolution and high dynamic range
video, a stunning landmark. But the basic structure of codecs has remained largely unchanged over time, the gains
obtained mainly through complexity increases. Moreover, video encoders have for decades used the same mean squared
error, or sum of absolute differences, measure to optimize coding decisions. At the same time, the rapid rise of deep
learning (DL) techniques poses the question: can DL fundamentally reshape how video is coded. While that question is
highly complex, we first see a path for DL methods to make inroads into how video quality is measured. This in turn can
also change how it is coded. In particular, we study a recently introduced video quality metric called VMAF and find
ways to improve it further, which can lead to more powerful encoder designs that employ these measures in the coding
decisions.

1 INTRODUCTION

Lossy video compression is one of the most successful communications technologies that been developed in the past few
decades. While lossless compression of diverse data types such as text, speech, images, and video all generally max out
at under 3:1 compression, the lossy compression of multimedia data can achieve surprisingly high levels of compression,
while still offering reconstruction qualities suitable for a variety of applications, most notably surveillance,
communications, and consumer entertainment. While lossy coding of all media has made significant strides in recent
times, the most remarkable progress has been in video. For convenience, we will summarize that development history

(fig. 1).

Beginning in 1988, with the development of H.261 and then MPEG-1, the focus was on VCD (video compact disk),
perhaps aimed at 25:1 compression. In 1994, H.262/MPEG-2 was focused on DVD, aimed at about 35:1 compression. In
2003, H.264/MPEG-4 AVC was focused on 1080p+ applications, and aimed at 20-200:1 compression. In 2013,
H.265/MPEG-H HEVC was focused on 4K applications, and aimed at up to 500:1 compression. Finally, H.266/MPEG
VVC, currently in development and due for completion in 2020, is focused on 4K/8K, High Dynamic Range (HDR)
video, as well as spherical or 360-degree video, a novel application used in virtual reality. It squarely aims for up to
1000:1 compression, as the test data rates in the recent Call for Proposals (CfP) show [15]. For a review of these video
coding developments, see [29-32]. In about 30 years of development, we have increased the compression efficiency of
video coding by a stunning 50:1, so that video compressed in H.266 can earnestly aim to represent data at a rate that is
one-tenth of one percent of the original video! So breathtaking is this achievement, that it was likely inconceivable to
anyone when this journey began. But just as Moore’s Law on compute density has marched on inexorably for decades,
yet may soon be reaching its limits, so too in video compression we may be facing a similar story. While no one knows
how much more efficiency can still be extracted from video, it is possible we are reaching some limits (remarkably,
information theory has yet to set limits on lossy video coding efficiency).

What is also remarkable that the basic structure of the video codecs — a hybrid, motion-compensated residual coding
design, first proposed in 1974 [36], with predictors, filters, transforms, quantizers, and entropy coders, has been
maintained the entire time, adding only sophistication and complexity to each of its component parts. Thus, the massive
coding efficiency gains have come mainly from two key factors: increasing video resolutions, and increasing operations
per pixel, based on increasing compute densities available. What is further interesting is that all codec designs have
essentially be structured to optimize for a single loss function — mean squared error, MSE (or just the sum of absolute
differences, SAD). So much success has perhaps bred a reluctance to change the way business is done. But there is
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finally a sense that to achieve further visual quality improvements, in and beyond H.266/VVC, we may perhaps benefit
from improving our visual quality assessment measures as well. Thus, image quality metrics such as SSIM have been
implemented in the decoder (though not yet into the encoder decisioning processing, for rate-distortion optimization, or
RDO). For H.266/VVC development, a conditional weighted MSE function has been introduced (fig. 3), which is used
for HDR and 360 video. In this paper, after reviewing some coding tools that have deep learning approaches, we focus

on its impact on video quality assessment. We find some encouraging evidence that DL methods can be useful in this
field.

Standard | Date | CR | KepApp !
ITU/H.261 | 1988 20 vid conf
ISO/MPEG-1 | 1992 25 VCD
H.262/MPEG-2| 1994 35 DVD, TV
H.264/AVC | 2003 |upto200| generic
H.265/HEVC | 2013 |upto500| generic
H.266/VVC | 2020 |upto 1000 generic
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Figure 1. (a) Resume of video coding standards. Encoder block diagrams, (a) H.261, 1988 [38]; (b) H.265/HEVC, 2013
[39], copyright IEEE. All essential elements of the codec were already present in the H.261 design, including predictors,
transforms, quantizers, filters, and entropy coders. These elements, scaled up, remain in use for the next gen VVC codec.

Y-PSNR(dB)

34

32
30
28

26
] 500 1000 1500 2000 2500 3000 3500 4000

—8—AVC —8—HEVC —8—JEM

Figure 2. FastVDO example extreme low bitrate coding, with 3 codecs (AVC/HEVC/VVC draft), on a
1080p50 sequence (Basketball Drive), with (a) objective metric Y-PSNR; (b) crop visuals at 0.8 Mb/s (that is
3000:1 compression!), using VVC, HEVC, and AVC (H.266/5/4) L to R. (a) Hor. Line suggests that as of now,
0.8 Mb/s VVC ~ 1.2 Mb/s HEVC ~ 3.2 Mb/s AVC (VVC=1.33X HEVC = 4X AVC in coding efficiency).
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Figure 3. (a) Source code for RDcost in the H.266 test model BMS, retrieved 7/6/2018, supports weighted
MSE (conditional), and SAD (default) as distortions. (b) Source code for RDcost in open source x265
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(retrieved 7/6/2018), the most widely used H.265 encoder, supports SSIM, and a psyRD, though SAD is
default. Models beyond SAD/PSNR are just beginning to make inroads into actual encoders in wide use.

AOM AV1 (1.0) H.265/HEVC HM 16.18 H.266/VVC BMS 1.0 (draft)
Block 10-way split (AV1) Quadtree (QTBT) + Ternary Tree (TT)
Structure | Largest block size 128x128 CTU size up to 64x64 CTU size up to 256x256
(superblock).
Intra 56 intra directional modes 35 intra prediction modes. | 65 intra prediction modes with improved
Prediction | 5 non-directional modes intra mode coding
Recursive filt. based intra prediction Cross-component linear model (CCLM)
Chroma from Luma prediction
Color palette based intra prediction
Intra block copy
Inter Single and compound prediction Hierarchical weighted Hierarchical weighted prediction (P, B
prediction | (similar to P and B) (VP9) prediction (P, B frames) frames)
Extended reference frames (3 to 7) PU level motion vector Sub-CU based motion vector prediction
Dynamic spatial and temporal prediction Adaptive motion vector precision
motion vector referencing Motion vector difference Affine motion prediction
Overlapped block motion 1/4 pel MV accuracy Decoder-side motion vector refinement
compensation Block motion comp.
Warped motion compensation Translation motion
Advanced compound prediction prediction
Transform | Transform blocks 4x4 up to 64x64 Transform block size 8x8, | Transform block sizes 4x4 up to 64x64
DCT, ADST (VP9), Flipped ADST, | 16x16, 32x32 Adaptive multiple core transforms
DST-1 DCT-II and DST-VII Mode dependent non-separable secondary
transforms (4x4)
Loop filter | Constrained directional enh. filter Deblocking filter, SAO Deblocking filter, SAO, Adaptive loop filter
Loop restoration filters
Frame super resolution
Film grain synthesis
Entropy | Multi-symbol entropy coding CABAC Modified CABAC (with Context modelling
Coding Level map coefficient coding for transform coefficient levels)

Table 1. Tools Comparison for AOM AV1, HEVC HM, JVET VVC BMSI (Draft).VVC is a standard currently in development. For
many of the listed tools, there is a deep learning variant (though currently of higher complexity).

2 A PRIMER ON DEEP LEARNING METHODS

Neural networks (NNs) seem promising for many applications, but need extensive training to be useful. A breakthrough
happened in 2006, when led by Canadian researchers (with G. Hinton at the center), deep networks were introduced
which learned all stages through supervised training — no hand-tuning needed [LeCunHinton]. And 2014 opened the
floodgates, when a Google trained network called GoogleNet (later called Inception), inspired by a previously winning
effort by G. Hinton and company in 2012, finally approached human-level performance in the key task of image
recognition, with a 6.7% error rate — a landmark feat [LeCunHinton]. A 2015 network by Microsoft [ResNet], with 152
layers, brought the error rate further down to a stunning 3.6%. And a combined Inception-ResNet model by Google in
2015 [Incv4] brought the error rate to 3.08%, exceeding humans on the same test data — stunning the world. A vast array
of deep learning methods have appeared in just the last five years, most still having roots that trace back to the Inception
model. The success of the Inception-ResNet model in image classification has been so convincing, that it has the feel of a
definitive solution. Convolution layers automatically find the most useful features directly and hierarchically from the
data itself, while the final, fully connected layer with a softmax activation categorizes the images into discrete classes.
Differentiability assumptions on functions and the chain rule allow backpropagation training, where nodes are
reweighted according to whether they contributed to (in)correct outcome, and repeated forward/backward propagation
finds weights that work well. This still works when ReLU activation is used (only one non-differentiable point), and
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ReLU has the advantage that its derivative is 1 for positive x, easing the well-known vanishing gradient problem when
training a large system by gradient descent. The ResNet model, which adds interlayer identity maps (f(x)=x) in network
architectures, provides further help, since their derivatives are also 1. We will use the following key references in our
development. First, the book Deep Learning, by 1. Goodfellow, Y. Bengio, and A. Courville, MIT Press, 2016
[DLbook], will serve as a primary source for the lay of the land. Another primary source will be the book-length article,
“Learning Deep Architectures for AL,” by Yoshua Bengio, 2009 [YBbook]. Finally, the expository 2015 paper, “Deep
Learning,” by Y. LeCun, Y. Bengio, and G. Hinton [LeCunHinton] is a powerful single source. And for computational
complexity analysis, we rely on [VSze].

For our practical purposes, CNNs are key to image recognition tasks, exploiting spatial structures (e.g., edges, texture,
color), while recurrent neural networks (RNNs) can take on tasks that involve temporal processing (such as with natural
language: speech, text). These network types can also be combined, in sequence, for example to create text annotations
for images and video. For segmentation in image/video data, some combination of these two architectural types is also
directly merited, but more complicated than say for image annotation, where the information itself is static in an image,
only the annotation requires natural language, which is not static but involves temporal processing. But in video data, the
information itself has both spatial and temporal dimensions. Despite the success of the image-based methods mentioned
so far, to date there has been limited work in truly video-centric processing for visual recognition tasks. We do note that
the 2017 Imagenet Large Scale Visual Recognition Contest (ILSVRC 2017) explicitly had a category for object detection
in video sequences [ILSVRC-vid], which we explore below. For starters, CNNs can be used for accurately recognizing
digits, such as license plates and even handwritten digits such as in the MNIST database (over 99% accuracy), a test we
repeated. With RNN, we’ve generated fake Shakespeare as well. More surprising still is that we have used CNNs
backwards to deep dream, creating dreamlike images starting from captured ones, by flowing slowly in output parameter
space away from a given point (fig. 4). In fact, deep NNs can not only be representative of source data, but even auto-
encode — they can generate (decode) originals, or fully realistic fakes, analogous to image/video compression, where an
encoder creates a sparse (but faithful) representation, and a decoder creates that reconstruction. This is also the start of
Generative Adversarial Networks or GANs [DLbook] — a contest of two NNs, one creates fakes, the other judges their
realism. An autoencoder NN is a sequence of nonlinear mappings, which represent source data, and a decoder segment
back to the original domain, where the Lagrangian cost is minimized for fidelity of representation, but Z is lower
dimensional. Video compression has now passed a staggering 1000:1 data reduction (Gb/s to Mb/s), while producing
high-quality reconstructions, testing credibility. Similar reductions can be achievable in NN auto-encoders as well, and
NNs can imitate all aspects of compression (e.g., predictors, filters, transforms, quantizers, entropy coders). It remains to
be seen if NN-based (or assisted) frameworks for video compression can reach the state-of-the-art.

113 i F
x5vE . 525 . 5% combinedx i

E(x,z) m argmin|lx = F(x)||* but Z is chosen lower dimensional

. | = | 53 |

Figure 4. FastVDO deep dream, using [Incv4], w/ the presenter’s image in Hong Kong as seed, a stark model of real
dreams, and a visual indicator of parallels between deep NNs and animal visual cognition.

Reinforcement Learning. A powerful new idea in the field of Al, reinforcement learning (RL), allows Al systems to
learn on their own, entirely from experience, by learning a policy of action that maximizes a reward. This works well in
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playing games (e.g., AlphaGo, Google’s machine that beat the human master) [deepmindRL] where one learns
successful moves simply by playing millions of games, and rewards (win or lose) are used to modify the approach to
playing. Just as backprop supplies a neural weight gradient according to its partial contribution to success, RL supplies a
policy gradient, say in a strategy, by its partial value in winning. Since policy choices are often discrete, but we work
with smooth functions, we assign probabilities for the various policy choices, and adjust these. To play a game, we
choose values according to the probabilities. War games have long been used precisely for the same reason: to find
winning strategies by fighting in sims, rather than thinking them up. In a sense, RL generalizes gradient-descent learning
by backprop; if we view the action of NNs with given weights for performing an action (e.g., classification) as policies,
then policy gradients can reduce to actual gradients. But that would only repeat existing DL methods, whereas the RL

framework is far more powerful, and can even be used to design DL architectures for given problems, called AutoML
[aml-aml3], with leading performance (fig. 5).
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Fig. 5. (a) Google’s NASNet, by AutoML, beating hand-built image classifiers [ami3, nasnetG]. This is a game-changer

(code public). Since machine vision is built on imageClassifiers, this is a 2" revolution. These results are for the top-1
classification, similar results also hold for top-5, what is often reported. (b) The neural arch. search process (NAS)
[neuAdrchSearchG], which can create good NNs, like NASNet. Graphic (a) is from cited Google Blog.

The Neural Architecture Search process [neuArchSearchG, nasnetG] works as follows. A controller NN (an RNN)
samples an architecture A with probability p (in reality, each component has a probability), thus creating an instance
child network, whose performance on a given task, say image classification, results in accuracy R. In the next iteration,
the probability p is adjusted by scaling its gradients by control parameters by the accuracy R, more accurate models
increase in probability. The recurrent neural network controller learns over time which architectural components were
the most successful. Since it is designed to increase the reward (success) it eventually develops a powerful, successful,
and compact design that work on the initial test problem. Finally, the test set can be changed, and the process restarted.
Surprisingly, what Google has found is that a network that works well on the tiny CIFAR-10 dataset (60k images of size
32x32), upon replication into a number of layers, also works well on the massive ImageNet dataset (14M large images,
and growing). While this process is not yet fully automated (e.g., guessing a generic structure as starting point), it is a

strong indication of the trend. Indeed, if component tools in a NN are listed, a system can test all combinations from
scratch, and be fully automatic.

3 RESUME OF APPLICATIONS OF DEEP LEARNING TO VIDEO CODING

We restate that a NN can indeed be deployed to perform all the same functional tasks that are performed in the design of
a modern video codec, such as predictors, filters, transforms, quantizers, and even entropy coders. For example,
predictors such as motion estimators can be designed using NNs [nnme], though highly complex, while intra-predictors
are quite similar. As for filtering, numerous papers have addressed this topic; we cite [cnnf]. DCT-like transforms can be
constructed with CNNs [nndct]. For quantization, since this is a simple classification problem, this has been known for
decades, and even vector quantizers can be represented [nnvq]. Indeed, a full end-to-end image codec can be built by
using neural networks [vrRnn], which moreover allows to adjust the data rate. We wish now to focus on video coding.
One important observation is that, if considered as a restoration problem post compression, we note that we have both
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distorted and original content at hand. So a NN can be trained to modify the distorted imagery (block-by-block) in the
direction of the original content. This was initially successfully done in the context of JPEG compression [arcnn], and
then later in the context of intra in video [vrenn]. In particular, this concept can be viewed in two contexts: as a post-loop
filter [cnnf] in the decoder, and as a post-decoding restoration processing [dcad, mfqe]; see the many references cited in
[mfge]. One interesting observation is that while these methods provide a modest impact on image quality (about 0.5 dB
gain), that difference is in fact visible in close-up views (where it significantly reduces artifacts such as blurring,
ringing...).

Meanwhile, at least two papers, both from April, 2018, have directly addressed the problem of building a full video
codec from DL alone [nnfullvid, voxelcnn]. Both report performance comparable to H.264/AVC, our 2003 standard.
Meanwhile, our coding algorithms have seriously improved (see fig. 2). Nevertheless, the fact that this can be done at all,
with reasonable success, is stunning, and there is little doubt this nascent field will advance rapidly in the coming years.

4 VIDEO QUALITY ANALYSIS — A RESEARCH PROGRAM

While DL can fill in for many of the tools used in video compression (or even potentially the entire chain), we focus now
on a specific aspect that seems especially promising — measuring video quality. Digital video services, encompassing
everything from broadcast TV and streaming to video chat, is a massive worldwide industry estimated to reach $120B by
2022 [3]. Critical to the success of this industry is providing the highest quality video afforded by receivers and channel
capacities. But measuring that video quality, called video quality assessment (VQA), remains a fine art, best done by
subjective testing, impossible when you have millions of streams like Netflix, YouTube. Instead, this industry has long
used an objective metric called peak-signal-to-noise ratio (PSNR), developed more for computational ease than
reliability. Recently, new objective metrics such as Structural SIMiliary (SSIM) and Visual Information Fidelity (VIF)
have been introduced, which have made some inroads. But a fundamental need remains to have an objective metric
which is both easy to compute and has predictive power for subjective quality with very high reliability. The availability
of such a reliable (and computable) metric would be a bonanza. Our research program: construct it by combining image-
based measures with motion-based measures, fused if needed through machine learning methods. Netflix has proposed
just such a fused metric called VMAF (and a simple linear SVM fusion method), which is apparently the state-of-the-art
for its application (streaming by http/tcp) today. While image-based measures are well-represented in it, we find the
motion-based measure used inadequate, and see a path to improving it. Our intuition is that improving the motion
representation will help.

In fact, motion is key to understanding vision, and thus video (a feature film is a motion picture). Yet for over 30 years,
full reference video quality analysis has principally relied on image quality analysis, applied per frame, then averaging
over frames, ignoring the fundamental role of motion in video. This is clearly incomplete. “Gordon Lynn Walls, a
comparative anatomist, observed, “If asked what aspect of vision means the most to them, a watchmaker may answer
‘acuity,” a night flier ‘sensitivity,” and an artist ‘color.” But to the animals which invented the vertebrate eye, and hold
the patents on most of the features of the human model, the visual registration of movement was of the greatest
importance” (Walls, 1942)” [1]. In a predator/prey world, it is a vital survival sense, but also a key to video quality.
Video quality analysis is itself an industry on its own, with standardization efforts running for over two decades in the
Video Quality Experts Group (VQEG) of the International Telecommunications Union (ITU, a UN-chartered
organization based in Geneva) [21], a sister organization to the Video Coding Experts Group (VCEG) of ITU that we
have served in for ~20 years. US govt agencies such as the National Telecomm. Information Admin. (NTIA), and the
National Institute for Standards and Technology (NIST), both of the Dept. of Commerce. In fact, a leading VQA, called
VQM-VFD, was developed at NTIA, and is a VQEG standard [10]. While VQA research has been going on for decades,
the video coding industry, often working in nearby ITU facilities in Geneva, has paid little attention. But now, these
groups are starting to pay more attention to these VQA efforts, incorporating SSIM/MS-SSIM as well as PSNR into
post-compression assessment calculations (though not yet in the encoder decision making process as of July, 2018). The
old workhorse, PSNR, religiously used for decades, and central in encoding decisions, may be running out of steam.

“This ability to detect motion is key for animals, allowing them to detect the presence of predators,” according to Prof.
Daniel Kerschensteiner, MD, a discoverer of the motion detection mechanism in the eye [2]. Our understanding of
human vision begins with the 1982 book, Vision, by David Marr [13]. In it, he pursued edge representations, multiscale
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processing (just before wavelets and multiresolution analysis [35,36]), and angle-dependent Gabor functions (modulated
Gaussians) as basic functions for visual representation. These ideas remain valid today, even if the details differ. In fact,
time-frequency and time-scale variations (i.e., translations, modulations, and dilations) are the only invariances of the
Gaussian minimizers of Heisenberg’s Uncertainty Principle, a mathematical theorem with deep implications in physics
[14]. Marr also observed its import in image processing. Thus, Gabor functions (wave packets: translated, modulated
Gaussians) are models of elementary particles, as well as elementary packets of signals, while time-scale translates lead
to wavelets. What signal processing can learn from physics is astonishing, not least that as in physics, Lagrange calculus
plays a central role, in both video compression and deep learning. But Marr’s ideas also play an important role in
formulating video quality assessment (VQA). For down-to-earth video quality applications in the field of video
compression, we have a reference video, consisting of uncompressed video and considered pristine, and various
compressed versions for use in applications such as streaming or broadcast, which are distorted. Every one of the
millions of streams of video made available by the likes of Netflix, Amazon, YouTube, Hulu, Baidu, and many others
around the world is judged on its quality prior to serving/casting. Yet for this task, the industry has mainly used image
quality metrics, in fact, for the most part just mean-squared error (MSE), and its relative PSNR, ignoring motion. In large
part this is due to complexity considerations. In fact, a usable VQA must meet two stringent requirements: (a) provide
high predictive power for subjective visual quality, and (b) be computationally efficient. While both are challenging, it is
in this last part that many VQA metrics developed over the years really fall short. Somehow, we need to improve metrics
yet make them more computable.

If successful, we envision at least three separate, increasingly larger but more demanding applications of VQA. First,
VQA can be used in stream selection (send the best quality video), which an elementary, often offline application.
Second, VQA can be used in video restoration at the receiver (restore for best visual quality). This could be combined
with deep learning to train blocks of video frames on the original video, which can provide effective restoration in
compressed and other distorted videos [18-20]. This is a powerful application, especially offline. Finally, it could be used
at the encoder to decide how best to encode a video with a given codec (code for true visual quality). While stream
selection (at server) and restoration (at receiver) can require real-time performance, and thus pose complexity
constraints, it is the encoding application that is by far the most challenging; we will focus on this application. The issue
is that all modern encoders rely on using rate-distortion optimization (RDO) [9,14] to make decisions, based on an
interplay between distortion D, and the rate R, to optimize the Lagrangian (where A is a constant called a Lagrange
multiplier):

(1) L= D+ AR=Y%; Di+AR;; 8L=0=>5L;=0=> A=—=! aconstant.

Thus, given any number of independent parameters to optimize (e.g., various pixel quantizers), these are jointly
optimized when the slopes of negative distortion over rate are all equal [14]. Now, in coding a 4K video, a modern
encoder such as H.265 must make millions of RDO decisions per second, on everything from mode selection and motion
estimation, to quantization and filtering. Since many video applications require real-time encoding (e.g., live events),
usually in hardware, this puts severe constraints on how RDO is actually computed. The rate R is straightforward: how
many bits it takes to encode the data (though even this is estimated to save cycles, not computed). But what to use for the
distortion D, comparing a coded MxN block B to the reference version, is more open. Typically, the simple mean
squared error (MSE) or L2-norm is used to represent the block-based spatial error Ej ... In fact, this is further
simplified to just the Sum of Absolute Differences (SAD, or L1-norm), mainly to avoid squaring!

M,N

(2) Ek,spat = SAD = Zi,jzl
M,N
3) Ek,spat = MSE =1/MN Zi,j:l |Bref,i,j — Bcoded,i,leZ; PSNR = 10 = log (255"2/MSE)).

|Bref,i,j - Bcoded,i,jl = ||Fref - Fcoded|| ,the L1 norm.

For decades, coded videos have been graded by PSNR values to the point of intimate familiarity (e.g., a 38+dB PSNR
for 8-bit video is entertainment quality), while the internals of the video codecs actually use SAD to optimize its
decisions. Given these computational bottlenecks, one can understand the reluctance to incorporate more sophisticated
yet untrusted VQA metrics that have been proposed for years. Enter Netflix, one of the world’s largest video encoding
companies, accounting for 36% of all Internet traffic in the US in 2015 [8] and growing, and Amazon Web Services
(AWS), with a million+ server-farm, aided by Graphical Processing Units (GPUs) and Field Programmable Gate Arrays
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(FPGAs). Netflix does all its video crunching offline on AWS, and has sizable headroom for more computations.
Suddenly, VQA is mainstream. One observation we make is that in applying a VQA at an encoder, while restrictive in
complexity, does have the benefit of having at hand the actual motion estimation used in the encoder; more later (see
Detailed Innovations). As mentioned, up till now all VQA metrics in wide use were really Image QAs (IQAs). A recent
metric proposed in 2016 by Netflix finally aims to remedy this, introducing a video multi-algorithm fusion (VMAF)
metric [4,5]; it fuses two image quality metrics, and a feature called “motion,” into a metric using a support vector
machine (SVM) regressor. The two image quality metrics are the well-known Visual Information Fidelity (VIF) [6], and
the Detail Loss Metric (DLM) [7]. Both VIF and DLM are based on extracting features from images in the wavelet
transform domain for multiscale processing (Marr-inspired!). In fact, both VIF and DLM have features at several
different scales, but in the end 4 VIF scaled features, and 1 of DLM, are used in the VMAFO0.6.1 model. As these work
well, we keep them. For now, we focus on the “motion” feature used in VMAF, which is not a metric at all, nor even
compares a distorted video with a reference (like the other two true metrics), but is simply the sum of absolute difference
(SAD, or L1-norm) of the frame differences in the reference video. Surprisingly, even this allows them to claim the state
of the art [4], in terms of power to predict subjective quality by human observers. But realizing this mission is
incomplete, Netflix has generously released its software and dataset to encourage more work [5]. We will employ this
software throughout (and cite Netflix results).

We observe more carefully that the “motion” feature used in VMAF [5] makes no use of the distorted video at all.
Instead, it uses the following. If an original (uncompressed) video sequence is a set of frames {F}, k=0,...,K, VMAF
uses the Sum of Absolute Frame Difference (SAFD) as a motion feature (Netflix calls this Mean of Co-located Pixel
Difterence), where ||*|| is the L1-norm. We will simplify refer to this Netflix feature as “M”, for motion.

. K-1_.
(4) SAFD = Y¥i_; ||Fi — Fi_1ll- (Actually, it uses Zkzl min {||Fi = Fi—q ||, [|Fic41 — Fi [13)

While this is informative about how much motion is in the video (and thus in part how difficult it may be to compress), it
sheds no light on the quality of the motion in a compressed reconstructed (distorted) stream, which is the point of the
VQA. Nevertheless, as it does carry motion information, it manages to achieve a slight gain over other competitive
systems in predicting visual quality especially when combined with another leading approach: VQM-VFED [10,11], on a
Netflix dataset [4], see figure 5. Here SRCC and PCC are the Spearman and Pearson Correlation Coefficients, and
RMSE is Root MSE. The VQM-VEFED itself, designed in 2011, is a complicated metric, using 8 hand-tuned spatio-
temporal features derived from blocks of video frames, over a short period of time, in this instance, 0.2s. It is a classic
study on how things were done prior to the deep learning revolution in 2012 [12], although oddly, it also uses a simple 2-
layer neural network to provide its mapping. We aim to improve on the quality of motion representation in VMAF.
Specifically, for original video frames {F,}, k=0,...,K, and distorted video frames {G,}, k=0,...,K, since the frame
difference precisely corresponds to motion (all changes to pixels), we develop temporal motion based metrics using the
difference of frame differences (key innovation/simplification). Let’s call this FastVDO feature “DM” for differential
motion.

(5) Ektemp = I|(Fx — Fx—1) — (G — Gy—1) ||, with the L1-norm (but can be L2,0r Lp, etc).

This is zero precisely when the motion information matches between the original and distorted videos. In combination
with purely image-based measures, this can lead to a mathematical metric. We also develop several variants of this
concept.

VOM-VED, 2011. Figure 6, from the VMAF blog show that VQM-VFD [10,11], developed by the National Telecom.
Information Admin. of US Dept. of Commerce [23], is one of the most effective measures of video quality available, a
feat unlikely without incorporating temporal information. Indeed, it uses 8 hand-tuned features, covering both spatial
and temporal information (which it calls SI and TI, respectively), and was designed specifically to catch channel errors
such as frame delay (VFD=variable frame delay). Now in the age of deep learning, hand-tuned features are quickly being
replaced by machined learned features, which are not explicitly extracted, but learned and stored in network weights and
biases. If needed, we can pursue improving even this metric using deep learning. For now, we elaborate on the one
significant temporal feature used in it: TI Gain. It computes functions using spatio-temporal (ST) blocks.
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Figure 6. Netflix performance comparison of VMAF, VOM-VFD, and other metrics, vs Differential Mean
Opinion Score (subjective testing), from online at [5], in (a) table, (b) graphs (color dots are per seq. True
and Predicted Scores). SRCC and PCC are the Spearman and Pearson Corr. Coefficients, respectively, while
RMSE is root mean square error. While (a) and (b) indicate that VOM-VFD performs very well, [5] indicates
VMAF is both better and faster. Note that Netflix streams videos by http over TCP, so packet loss is not an
issue. VMAF was a breakthrough, in both performance and speed. (b) is from cited Netflix blog. Compare fig.
10.

6) fTI= rms(Y(i,j, t)—-Y(@,j,t— 1)); pTIG = max [loglO (%) , O]; functions of ST blocks.

Tlzain = STabove95%tail(pTIG).

Here, fT1 is the RMS of the frame difference at time t (motion) of the luminance component Y of a spatio-temporal (ST)
block of video, where the spatial extent is set at 0.4 degrees in viewing angle, and the temporal extent is 0.2s of video (at
301ps, this is 6 frames). pTIG compares the motion energy in the original and processed (distorted) videos, in a manner
analogous to PSNR, but clipped at 0. Finally, T_Gain is computed as the difference between (a) the average of the 95™ to
100™ percentile values, and (b) the 95™ percentile value, of pTIG. Without analyzing this further, we note immediately
that (a) it performs fairly well (better on jittery data); (b) it is complicated. Our mission to find something both more
effective and more computable. As mentioned, we can employ deep learning on the whole problem, and then extract a
functional model. But we return now to VMAF, and a recent update in April, 2018 from the Univ. of Texas called ST-
VMAF [16].

ST-VMAF, April, 2018. ST-VMAF [16] builds on the VMAF metric of Netflix, but recognizing its weakness in
representing motion, specifically adds spatio-temporal features. “VMAF ... does not fully exploit temporal video quality
measurements which are relevant to temporal video distortions.” [16, Abstract]. We fully agree, and zero-in on a key
temporal feature used in it. First, ST-VMAF is tested on a variety of datasets, and gives notable gains. While strong
performance in terms of high correlation coefficients to subjective scores is always desirable, we have two qualifiers: (1)
Most of the datasets have network-induced errors in the distorted videos (e.g., timing error, TE), so that this is addressing
problems not met by HTTP/TCP streamers like Netflix (except to mobile devices). (2) It is also computationally
complex, and difficult to implement into an encoder for actual decision processing. Compare this and equation (6) to our
equation (5), which is computationally simpler and captures true motion error. Our results on the NFLX dataset are in
fig. 10.
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Database |# Seqs Resolution Distortion Metric  |NFLX dat
Live VOQA 150 768x432 Codecs, TE PSNR 0.705
Live Mobile 160 720p Codecs, TE, RA PSNR-hvs 0.819
CSIQ-VQA 216 832-480 Codecs, TE, AWN SSIM 0.788
VMAF+ 290 1080p Codecs, Scaling MS-SSIM 0.741
NFLX 300 1080p Codecs, Scaling ST-RRED 0.764
SHVC 64 1080p Codecs SpEED-QA 0.781
VQEG HD3 135 1080p Codecs, TE ST-MAD 0.768
EPFL 144  |704x576, 1/4 Codecs, TE VQM-VED 0.931
USC-IND 3520 VGA-1080p Codecs VMAEF 0.6.1 0.928
Live-NFLX 112 1080p QoE ST-VMAF 0.927
Live-HTTP 15 720p QoE E-VMAE 0.93

Figure 7. Some informative tables from [16]. (a) various available databases for work in VQA, with citations in [16],
importantly highlighting the type of distortion imposed. [16] develops some variants of VMAF (called ST-VMAF, E-
VMAF), which show strong results on the various databases, which have transmission errors (TE), additive white noise
(AWN), rate adaptation (RA), and RA and/or rebuffering (QoE). The NFLX database is one of the few with basically
only coding artifacts. (b) shows the SRCC between predicted and subjectively rated scores. We note that on NFLX,
VOM-VFD does slightly better than ST-, E-VMAF. Note updated VMAF version (0.6.1) is used.

ORIGINAL VIDEO

Frame Various Gaussian Block Welgl;
Diff P Downscales > Filter > Entropy Loca
Calc. Variances
Weigh TSpEED
Entropy Diff I Feature @
DISTORTED VIDEO per Block various scales

Frame Various Gaussian EB::OCk vli.re|glh
iff Downscales Filter ntropy ocal
o Calc. Variances

Figure 8. A temporal feature used in ST-VMAF [16], called T-SpEED. It works at various scales (Marr-inspired)
requiring downsampling, does Gaussian filtering, subtracts local means, calculates local entropies, modified by local
weights, then finally compares reference to distorted videos, and then does averaging over blocks. So it seems
computationally complex. See fig. 9, where it appears to be ~5X more complex than VMAF. The variant E-VMAF is
similarly complex.

T ites b ta f d t internet traffi R
i::::‘t:SAr:el:;:l:en ge of aownstream intern atmnc Metrlc Sec[Frame
e [ ;¢ VMAF 0.3

vouTuoe [N 15.56
-t E-VMAF 1
Bl - oy STVMAF| 1.13
Fac’:t::; = :'.:,5 ST— R R E D 1 . 14
Amazon \n::o = 1.97 VQM-VFD 2-5
Hulu . 1:s| ST-MAD 10

Figure 9. (a) Internet traffic fractions, circa 2015 [17]. Since then, Netflix has grown several-fold. As of May, 2018,
Netflix has surpassed Disney as the most valuable media company, and is watched more than cable or broadcast TV. (b)
Relative complexity of leading VOA, as measured on a modern CPU, estimated from [16], for computing on 1080p data.
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VMAF is the most computable, while ST-VMAF and its variant E-VMAF take more a second or more per frame on
1080p, let alone 4K/8K. That’s a valid consideration, especially for encoder optimization applications.

Detailed Innovations and Research Vision

Innovation 1. Since the temporal frame difference represents motion, additionally consider the difference of frame
differences between the reference (original) and distorted videos, {Fy}, {G}, k=0,...,K, respectively:

(5) Ektemp = l(Fx — F—1) — (Gx — Gk—1) ||, the L1-norm (but can also be L2, Lp, Entropy, etc).

This represents the mismatch between the true and distorted motion, and thus is the temporal error Differential
Motion. Metrics can be developed by taking any of L1, L2, or Entropy. This is to be combined with spatial error,
linearly at first.

Innovation 2. In a video encoder, consider this difference now at the block level, again taking L1, L2, etc. For the
distortion measure D in doing RDO (equation 1), set as below. With L2, this is a metric. Set the distortion as a linear
combination:

(7) D= aEk'Spat + bEk.temp ,a +b :1, a, b>0.

Innovation 3. In incorporating these models into VMAF, initially keeping VIF and DLM for spatial error, and using
linear, then explicitly functional, and finally to DL models to optimally (nonlinearly) combine these measures into a
powerful VQA. Moreover, use complex VQAs judiciously, i.e. in using RDO to do motion estimation, first reduce the
motion search to the top few candidates with standard VQAs, and then select the best candidate with a more advanced
DL-fused spatio-temporal error. Several variants of such approaches are also possible, and will be reported on elsewhere.
But fig. 10 does show promising results for applying a very simple functional model in the training phase, computable as
a look-up table, in the VMAF construction. This very elementary model, which remains highly computable (we will
clock speeds elsewhere) already achieves good results, while a using a more powerful DL-model requires more data for
training. These results are of course preliminary, and further testing with a larger database of training/testing is now
warranted. We intend to test pure coding artifacts, and artifacts from channel errors, separately. HTTP/TCP streamers
(who also use buffering) only suffer coding artifacts, while streaming to mobile devices over mobile (not Wi-Fi)
networks may suffer further channel-induced errors. Both are important problems, but we intend to first focus on the

HTTP streaming problem.
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Figure 10. FastVDO test of VMAF, with performance on a Netflix database, where half the data is set as training, half
testing, and utilizing the Netflix VMAF software [5]. Our results differ slightly from Netflix because we retrain VMAF
(and our metrics) on a portion of the NFLX data, and test on the remaining. Raster from upper left: (a) original VMAF
0.6.1; (b) a FastVDO-variant FVMAF 1, a linear model with enhanced motion measures (eqn. 5),; (c), FVMAF2, with a
nonlinear functional model; (d) tabulation of correlation results. Note that the True Score has spurious points above
100, whereas the Predicted Score is restricted to 100, so in Octave, we clipped all scores to 100 (this improves FVMAF1
also). The encouraging performance of FVMAF?2 indicates some value in using nonlinear fusion of basic measures.
Recall there are actually 7 input parameters (4 for VIF, DLM, M, DM); for simplicity, we initially use a factorized
\functional model.

Application to HDR Video Quality Analysis

Now that we have covered how to develop novel, and powerful, fused VQA measures, we can consider specializations to
applications such as HDR and 360 videos. Here we only indicate candidate measures to add in the mix to construct a
fused metric; new performance results will be reported elsewhere. HDR video is video characterized by both high
dynamic range (typically 1K cd/m”2 or higher), significantly beyond the standard dynamic range (SDR) video of
typically 100 cd/m”2, and wide color gamut (typically BT.2020), with a color volume significantly beyond the standard
BT.709. This type of video provides noticeable value in high end consumer applications such as home theater, but also
presents unique challenges in video compression. [37] catalogs a long list of proposed HDR IQAs. Here we can choose
to include the wPSNR (or wMSE) metric among the measures to fuse, which is currently used in HDR codec video
evaluation, as well the encoder optimization work, in the VVC codec development effort. This metric weighs errors in
samples according to brightness, where brighter samples are weighed more (more noticeable). wPSNR is computed as
follows:

XZ
(8) WPSNR = 10 * log m, WMSE = Zall pixelsiin block Wi (luma(xorig,i)) *(xorig,i'xdec,i)z’

where X is the maximum pixel value for the specific bit depth. The weight, based on luma, is computed as:

(9) yi=0.015*luma(Xerig;) — 1.5 — 6; Vi=yi<=3?7-3:(y>6?6:y); wi(luma(Xeg;)) = pow(2.0, yi+3.0).

But we also have a more powerful candidate, based on our own development work in HDR video coding. We already
have workable measures for SDR videos; moreover, we have a framework in which HDR is coded by first converting
HDR to SDR by a scaling function (a function of spatial location and time). Rather than develop the mechanism here, we
cite [15, 34] and our own SPIE paper here, “HDR Compression in the JVET Codec,” San Diego, August, 2018. In
essence, we develop a monochrome scaling function A = A(X,y,t) — visualizable as a grayscale video — that captures the
surplus information in an HDR video over SDR. Let’s call this function the Dynamic Surplus (DS). Now, in comparing
an original and a distorted (compressed video), we can take standard Lp measures of the difference in these functions,
what we can call the differential dynamic surplus (DDS), as the error E_ HDR. For p=2, this is again MSE, but of this DS
function.
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(10) RGB_HDR = A(x,y,t)*RGB_SDR. DS = || M(x,y,t)||, where ||*|| is an Lp measure, p>=1, i.e., p=1, or 2.
(11) E HDR =DDS = || A_orig — A_dis ||, where ||*|| is an Lp measure, p>=1, i.e., p=1, 2.

This would be in addition to previous SDR-based measures, including spatial and temporal measures. We note that
among other work, [37] compiled the performance of a long list of potential HDR Image Quality Assessment metrics
(HDR IQAs). In their study, they found the top two performers were HDR-VDP2, and HDR-VQM, both achieving
above 0.95 in both PCC and SPCC. HDR-VQM is a variant of the VQM we have discussed, while HDR-VDP?2 is a well-
studied HDR IQA. While such high scores for HDR image analysis are encouraging, we have not found strong
supporting evidence that these measures are as effective in video quality analysis -- to date, no objective metrics for
HDR video have been widely accepted as being highly predictive of human visual scores. However, the use of such
measures in the mix, along with our differential motion DM, and differential dynamic surplus (DDS), in a potentially
deep-learning fused metric, may prove powerful in capturing the quality of HDR video. Advances in this area will be
reported elsewhere.

Application to 360 Video Quality Analysis

Similarly, 360 video is video that ideally lives on a 2D-sphere. In reality, sensors and displays are rectangular, so
projection formats play a central role, and a commonly used projection is the equi-rectangular projection, ERP. For 360
video, we can choose to include the WS-PSNR (or WMSE) for 360 video [15] among the measures to fuse, which is
currently used in the assessment of 360 video in the VVC codec development effort. In brief, the WS-PSNR differs from
the ordinary PSNR in that it accounts for the sampling difference between a flat (rectangular) representation and a true
spherical one. Since in the ERP domain, the sampling density diverges towards the poles, it is suitably weighted by a
cosine, given by:

MAX® _
WE_FSENE - 10 &F;;? (W) W{f-;f}gﬁy - QGFU + Q-E'N NKZ}W

(12) o,
M=1K=1

D N =¥ GNP W)

[md jm{

WMSE =
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Zié.;l 2?[:511 wl, f)

5 COsNCLUSIONS

We have reviewed some applications of deep learning in video coding development, focusing on video quality
assessment (VQA). In turn, VQA can be directly used in coding decisions, provided that the computational complexity
of the VQA permits its insertion into the millions of decisions an encoder must make. In this regard, we reviewed some
state of the art VQAs, including the VMAF measure. We then proposed enhancements, related to motion representation,
which are modest in computational burden, but add value. We also proposed a simple nonlinear model, fast computable
with a lookup table, which further improves the performance. This preliminary result looks encouraging, and will be
investigated with more extensive datasets in future publications. We also suggest modifications for use in measuring
video quality in the context of HDR and 360 videos.
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